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Abstract  

Aside from the traditional statistical regression methods, there have been upsurges in using Artificial Intelligence (AI) 

techniques for predicting and analysing deformations on tunnels, dams, bridges and subways. This upsurge is linked to the 

self-adaptive nature of the AI to learn and generalize adequately on the dataset yielding good prediction results. However, little 

AI predictive analytic works on open pit wall deformation based on geodetic measurements have been done in the mining 

industry where prediction of active pit wall deformation, if not properly evaluated, can be catastrophic, leading to loss of life, 

property damage and eventual collapse of mining operations. This paper presents a comparative study of three supervised 

Artificial Neural Network (ANN) techniques - Generalized Regression Neural Network (GRNN), Radial Basis Function 

Neural Network (RBFNN) and Backpropagation Neural Network (BPNN) - to predict mine pit wall deformation. The essence 

is to carefully choose the best AI technique, which is fault and noise tolerant and has a higher generalization ability. In addition, 

the selected AI method must correctly handle the non-linearity and high parallelism characteristics exhibited by the rock mass 

component of the monitored mine pit walls. A total of 709-time series datasets recorded in a daily mark interval were used to 

develop the ANN prediction models. The overall statistical analyses revealed that the RBFNN demonstrated good prediction 

power and outperformed the BPNN and GRNN by achieving the least MAPE, MSE, RMSE and the highest R and R2 values of 

0.149009%, 0.035698 mm, 0.188939 mm, 0.999984 and 0.999968, respectively. 

Keywords: Mining, Mine Deformation, Artificial Intelligent, Artificial Neural Network, Time series.

1 Introduction  

Deformation or changes occur in a rock mass when 

there is continuous but necessary excavation, which 

is typical in any surface or underground mining 

activities and other constructional works. These 

constant activities cause stress in the rock mass of 

interest, potentially leading to the deformation or 

instability of structures and mine pit walls. Vicovac 

et al. (2010) underscored that rock falls and 

landslides (deformation) are the major types of 

hazards worldwide that can kill or injure many 

individuals and affect productivity leading to high 

operational costs. Dick et al. (2014) explained that 

the deformation of mined ground is the earliest and 

most obvious characteristic of a mine disaster. This 

problem has necessitated the need for researchers to 

adopt various mathematical techniques to monitor 

and predict pit wall deformation (Konakoğlu and 

Gökalp, 2017). Notable methods include but are not 

limited to the Pelzer approach, Karlsruhe model, 

Iterative Weighted Similarity Transformation 

(IWST), Least Absolute Sum (LAS), Finite Element 

Method (FEM), inverse velocity (Fukuzono, 1985) 

and slope gradient (Mufundirwa et al., 2010). The 

last two methods (inverse velocity and slope 

gradient) are based on the analysis of point 

measurement data derived from traditional geodetic 

prism monitoring (Dick et al., 2013). It is important 

to note that researchers (Palazzo et al., 2006; Kalkan 

et al., 2010; Osasan and Afeni, 2010) have reviewed 

the traditional numerical and statistical techniques 

for predicting structural deformations. However, 

these techniques are without inhibiting limitations 

considering the non-linearity and complex nature of 

structures associated with open-pit mines 

(Newcomen and Dick, 2016). 

 

Over the years, scholars have relied on more robust 

Artificial Intelligence (AI) techniques to serve as an 

alternative to the traditional deformation modelling 

methods. AI techniques such as Support Vector 

Machine (SVM), Generalised Regression Neural 

Network (GRNN), Extreme Learning Machine 

(ELM), Backpropagation Neural Network (BPNN), 

Adaptive Neuro-Fuzzy Inference System (ANFIS), 

Group Method of Data Handling (GMDH) and 

Radial Basis Function Neural Network (RBFNN) 
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have been successfully applied to solve multivariate 

non-linear prediction problems for deformation 

studies in dams, viaducts, bridges and other edifices 

(Du et al., 2019; Miao et al., 2018; Du et al., 2013; 

Sunwen et al., 2019; Cheng and Xiong 2017; 

Armaghani et al., 2020; Gourine et al., 2012; Lai et 

al., 2015).  A general conclusion from these studies 

indicates that AI models can serve as a benchmark 

for effective deformation prediction with characters 

of non-linearity, high parallelism and fault 

tolerance.  

As enumerated, several AI techniques abound for 

wall forecasting, focusing much on constructional 

and civil structures other than active mining pit 

walls. Few scholars, such as Ziggah et al. (2018), 

attempted to predict open pit geodetic deformation 

using Artificial Neural Networks (ANNs). Du et al. 

(2019) also proposed an ensemble learner which 

aggregated a set of weaker learners to mine a 

ground-based interferometric radar to develop a 

slope deformation prediction model.  

This study considered point measurement data 

derived from individually mounted traditional 

geodetic prisms on the open pit mine high wall. 

Monitoring and predicting individual prism 

displacements is imperative since deformation 

mostly starts from a localized point. Additionally, 

the relevance of using point measurement data is 

attested as it forms the base of analyses when 

implementing the inverse velocity and slope 

methods for deformation prediction (Dick et al., 

2014). Taking a cue from other monitoring 

structures, Ziggah et al. (2021) concluded that it is 

not prudent to rely on a unified prediction model 

where all the data from the mounted prisms, in this 

case, are combined. Furthermore, to satisfy safety 

and legal requirements in every mine, monitoring 

the performance of pit walls cannot be compromised 

hence the need to develop a prediction model for 

each mounted prism. This will ultimately lead to 

minimising property damage, loss of life and 

operations coming to a halt, which might have dire 

economic consequences.   

Even though AI methods are generally robust 

compared to the traditional statistical regression 

methods, each method has some limitations 

depending on the level of noise tolerance in the data 

it can accommodate. Moreover, in theory, a specific 

AI method may be only effective for a particular task 

and once the research object changes, the prediction 

performance may degrade drastically (Li et al., 

2019; Du et al., 2019). This confirms the no-free-

lunch theorem proposed by Wolpert (1996). 

 

Therefore, the present study was conducted to assess 

the accuracy performances of three ANN 

techniques, namely, BPNN, RBFNN and GRNN, 

for predicting open pit mine wall deformation. 

These methods have received comprehensive 

coverage for other structural deformation 

predictions with accurate results. However, very 

little application is known in the mine pit wall 

studies, hence, the option of employing the three 

ANN methods as mentioned earlier.  

 

2.  Study Area and Data Description 

2.1 Study Area  

The study was conducted on the eastern high wall 

formation of Mine X. This forms part of a 

concession of a gold mine company in Tarkwa and 

lies within latitude 50 15’ N and longitude 20 00’ W. 

Mineralized concentration zone along the hanging 

(high) wall is proven to be of the highest 

conglomerate band in the Basal reef. The open pit 

mine operations exploit narrow, tabular auriferous 

conglomerates within the paleo placer deposit of the 

banket series of the Tarkwaian basin. The wall 

understudy is expected to suit a design of an 18-

metre and 6-metre berm and bench formation. 

Currently, it stretches to about 1 500 metres north-

south direction with a total average height of 108 

metres, from crest to toe (Fig. 1). 

 

Fig. 1 Mine X Active Mining Pit Wall 

2.2 Data Description  

A geodetic technique for measuring and assessing 

deformation was applied to ensure good pit health 

and safety of operations. The prism monitoring 

system consists of the base station (where the 

robotic total station is mounted and reads up to four 

decimal places), the reference prism (back site) and 

the monitoring prisms (fixed on the various block or 

slope elevations being monitored) were applied. 

Data collection from the prism survey was recorded 

in the northing (N), easting (E) and elevation (Z) 

coordinates using the robotic total station mounted 

on the stationary base station. To a more 

considerable extent, the coordinates observed 

determine the increment in magnitude and the rate 

of deformation, hence their use for model 

development and prediction. The observational time 

was also recorded. To minimise the effect of adverse 
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weather conditions and maintain a uniform 

temperature, observations were done in the 

mornings and at sunsets. The study was conducted 

on a prism labelled P1 mounted on a 71 m reduce-

level bench. A total of 709 time series datasets 

recorded from 6th December 2018 to 14th November 

2020 in a daily mark interval were used in this study 

to develop the ANN displacement prediction 

models. 

3.  Methods Used 

This study applied and compared three supervised 

Artificial Neural Network (ANN) techniques of 

GRNN, RBFNN and BPNN to predict mine pit wall 

deformation. Each of these model techniques was 

developed in the MATLAB environment. A brief 

description of the methods is presented in the 

subsequent sections. 

3.1 The Back Propagation Neural Network 

This ANN approach consists of neurons 

(computational processors) that are connected and 

operate in parallel and learn from experience.  

The BPNN used in this study is a supervised 

multilayer feedforward network with a non-linear 

activation function consisting of input, hidden, and 

output layers (or neurons) (Fig. 2), with each neuron 

receiving a weighted sum from interconnected 

neurons. It has a proven record of learning fast and 

can handle relatively small datasets. The activation 

function usually used in the hidden layer is the 

sigmoid function, even though there are others, such 

as rectified linear unit, softplus and hyperbolic 

tangent (Szandala, 2020). 

 

 

 

 

 

Fig. 2 BPNN structure with 3 input variables for 

predicting mine pit wall deformation 

In the BPNN, the error computed at the output is 

propagated backwards through the layers to update 

the weights and biases. The steps used in calculating 

the backpropagation as described by Miima et al. 

(2001) is presented as follows: 

1. Select the number of input neurons (n), 

output neurons (q) and hidden neurons 

(m). Present continuous valued vector for 

the first training example (xi); 

{𝑋𝑖} =

[
 
 
 
 
 
𝑥1

𝑥2
⋮

𝑥𝑛]
 
 
 
 
 

 

2. Initialize all the weights to small random 

values[𝑊𝑛] 

3. Compute the value {𝑛𝑒𝑡𝑗} for hidden 

layers; 

{𝑛𝑒𝑡𝑗} =

{
 
 

 
 
𝑛𝑒𝑡1

𝑛𝑒𝑡2
⋮

𝑛𝑒𝑡𝑚}
 
 

 
 

= [𝑊𝑛]{𝑥𝑖} 

 

4. Calculate the activation value{𝑜𝑢𝑡𝑗} for 

hidden layers using for example, the 

sigmoid logistic activation function f (.) 

with a threshold parameter θj. 

 

{𝑜𝑢𝑡𝑗} =

{
 
 

 
 
𝑓1(𝑛𝑒𝑡1)

𝑓1(𝑛𝑒𝑡2)
⋮

𝑓𝑚(𝑛𝑒𝑡𝑚1)}
 
 

 
 

=

{
 
 

 
 
1
(1 + 𝑒(−𝑛𝑒𝑡1+𝜃1))⁄

1
(1 + 𝑒(−𝑛𝑒𝑡2+𝜃2))⁄

⋮
1
(1 + 𝑒(−𝑛𝑒𝑡𝑚+𝜃𝑚))⁄ }

 
 

 
 

 

 

5. Calculate the input value {𝑛𝑒𝑡𝑘} to the 

output layer; 

 

{𝑛𝑒𝑡𝑘} = [𝑊𝑘𝑗]{𝑜𝑢𝑡𝑗} 

 

6. Calculate the activation value {𝑜𝑢𝑡𝑘} for 

the output layer; 

{𝑜𝑢𝑡𝑗} = {

𝑦1
𝑦2
⋮
𝑦𝑝

} =

{
 

 
𝑓1(𝑛𝑒𝑡1)

𝑓2(𝑛𝑒𝑡2)
⋮

𝑓𝑞(𝑛𝑒𝑡𝑞)}
 

 

=

{
  
 

  
 
1
(1 + 𝑒(−𝑛𝑒𝑡1+𝜃1))⁄

1
(1 + 𝑒(−𝑛𝑒𝑡2+𝜃2))⁄

⋮
1
(1 + 𝑒(−𝑛𝑒𝑡𝑞+𝜃𝑞))⁄

}
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7. Calculate error [𝑊𝑘𝑗]; 

 

[𝑊𝑘𝑗] = 𝑛{𝑌𝑘 − 𝑦𝑘}{𝑦𝑘}{𝑜𝑢𝑡𝑗}
𝑇
+∝ [∆𝑔𝑊𝑘𝑗] 

with α and n the learning rate and momentum terms 

respectively. 

8. Compute the new values of weights 

between the hidden and the output layers 

[𝑊𝑘𝑗] = [𝑊𝑘𝑗] + [∆𝑊𝑘𝑗] 

9. Calculate the   [∆𝑊𝑛]for the input to 

hidden weights 

[∆𝑊𝑗𝑖] = 𝑛{𝑜𝑢𝑡𝑗}{𝑌𝑘

− 𝑦𝑘}{𝑦𝑘} . {𝑊𝑘𝑗}
𝑇
{𝑥𝑖}

𝑇+

∝ [∆𝑞𝑊𝑗𝑖] 

10. Calculate the new values of weights 

between the input and hidden layer 

[𝑊𝑗𝑖] = [𝑊𝑖𝑗] + [∆𝑊𝑛] 

11. Repeat by going to step 3 for all learning 

sample until the set stopping criteria is 

achieved 

 

The dataset was divided into training and testing 

datasets to ensure network generalization and 

accuracy. As a rule of thumb, the majority (80%, 

constituting 567) of the dataset was selected for the 

training. The dataset was not chosen randomly 

because the data observed was recorded in time 

series. The remaining 20% (142) formed the testing 

dataset to authenticate the model’s efficacy. 

The input and output data were fed into the network. 

After several iterations (epochs), the network 

parameters such as learning rate, momentum, and 

weights were updated until learning was successful; 

that is, a minimal error was achieved.  

3.2 The Radial Basis Function Neural 

Network 

The RBFNN is a three-layer feedforward network 

that consists of an input layer, a hidden layer and an 

output layer (Fig. 3). It is classified as a universal 

function approximator is trained by using supervised 

training algorithm (Wu et al. 2012). The RBFNN is 

a three-layer feedforward network consisting of an 

input layer, a hidden layer and an output layer (Fig. 

3). It is classified as a universal function 

approximator and are trained by is trained using 

supervised training algorithm. 

The input layer receives projected grid coordinates 

(Easting, Northing, Elevation) from the environment 

are received by the input layer and then transmitted 

as data to the hidden layer. The hidden layer 

containing the activation function performs the non-

linear transformation of the inputs (Easting, 

Northing, Elevation). In this study, the Gaussian 

function was used as the radial basis function in the 

hidden layer, and this was defined by methods such 

as clustering or the orthogonal least squares (OLS) 

method. The output layer is a linear combiner, 

mapping the non-linearity into a new space, and 

constitutes the 3-dimension displacement 

(deformation). The research applied the OLS 

algorithm in MATLAB for modelling the output. 

 

 

The summation of output of hidden layers with some 

weight is then provided as the output of the RBFNN.   

3.3 The Generalised Regression Neural 

Network 

The GRNN constitutes a single-pass neural network 

based on general regression theory. It uses the 

Gaussian activation function in the hidden layer as 

the function approximator. The network architecture 

of GRNN is made up of the input, hidden, 

summation and output layers (Fig. 4). As with other 

networks; the input layer receives the inputs from 

the datasets. The pattern layer calculates the 

Euclidean distance. Next is the summation layer, 

which constitutes the numerator (N) and 

denominator (D) parts. When applying GRNN, the 

spread constant comprises the adjustable parameter 

that needs to be fine-tuned. The output is estimated 

using the weighted average of the training dataset’s 

outputs, where the weight is calculated using the 

Euclidean distance between the training data and test 

data. For this study, three variables (E, N, Z) were 

used as the input variables to train and test the 

model, while the output was the 3D displacement. 

The model was developed in the MATLAB 

environment.  

 

Fig. 3 RBFNN structure with 3 input 

variables for predicting mine pit wall 

deformation 
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Fig. 4 GRNN structure with 3 input variables for 

predicting mine pit wall deformation 

3.4 Model Architecture and Statistical 

Evaluators 

The network’s architectural design is vital in 

analysing and accurately predicting the pit wall 3D 

displacement. The BPNN, RBFNN and GRNN 

models were developed with the observed Easting, 

Northing and Elevation serving as the input 

variables and their corresponding 3D displacement 

as the output. In all, a total of 709 epochs of 

observations were recorded. In building the models, 

datasets were normalized into intervals -1 and 1 to 

eliminate redundant data and obey the Gaussian 

distribution curve. As a rule of thumb, the datasets 

were divided into training and testing datasets using 

the hold-out cross-validation approach, with 567 

(80%) constituting the training set and 142 (20%) 

for the testing set. The efficacy of each model was 

determined using the testing datasets, which provide 

information about the ability to generalise with 

minimal error. It must be noted that the sampling of 

datasets was in a time series approach, and hence a 

random sample was not appropriate.  

 

Each model was tested using statistically proven 

evaluators such as the mean absolute percentage 

error (MAPE), mean square error (MSE), root mean 

square error (RMSE), correlation coefficient (R) and 

coefficient of determination (R2).  Statistically, 

relatively low MAPE, MSE and RMSE values are 

accepted, and the model is considered a good 

predictor. Low RMSE and MSE values also indicate 

fewer residual errors recorded by a model. The R and 

R2 quantify the strength of linear relationships 

between the actual and observed 3D deformation 

values of each model. A close to unity indicates the 

most vital relationship. When the actual individual 

values are selected, the corresponding predicted 

values could replicate the historical datasets. This 

further shows that the predicted values move in the 

same direction and magnitude in a time series 

manner. Equations (1) to (4) give the mathematical 

expressions of the evaluators (Temeng et al., 2020). 

 

MAPE = (100% N⁄ )∑ |(Mi  −  Pi) Mi⁄ |N
i = 1   (1) 

RMSE =  √(1 N⁄ )∑ (Mi  −  Pi)
2N

i = 1   (2) 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑀𝑖 − 𝑃𝑖)

2 𝑛
𝑖=1    (3) 

𝑅 =  
(∑ (Mi− M̅)(Pi − P̅)

N
i =1 )

(√∑ (Mi − M̅)
2 × N

i = 1 √∑ (Pi − P̅)
2  N

i = 1 )

  (4) 

Mi and Pi represent the observed and predicted 3D 

deformation values. The arithmetic mean for the 

observed and predicted values are represented by M̅ 

and  P̅. R2 can be calculated by taking the square root 

of R. 

4. Results and Discussion 

4.1 BPNN Model Performance 

The Levenberg-Marquardt learning algorithm 

(Ziggah et al., 2021; Arthur et al., 2020) was applied 

to train the network. A momentum coefficient of 0.8 

and a learning rate of 0.03 were applied during the 

training process. The hyperbolic tangent activation 

function was used in the hidden layer, while the 

linear activation function was used in the output 

layer since the dataset observed satisfies a regression 

problem. As a rule of thumb, the optimal hidden 

neurons based on the least RMSE for the model 

testing was chosen using a trial-and-error approach. 

For the 3D displacement prediction, the optimal 

BPNN architecture consisted of three inputs, one 

hidden layer with twenty-seven optimal neurons and 

one output layer thus, [3-27-1]. 

The validity of the BPNN was tested using various 

statistical indicators such as the RMSE, MAPE, 

MSE, R and R2. Table 1 shows the matrix 

presentation of the multiple evaluators for the 

performance. It is observed that the BPNN model 

produced good values of RMSE, MSE, R, R2 and 

MAPE. Based on the reported results, it can be 

inferred that the 3D displacement prediction by the 

BPNN model on the test datasets does not deviate 

significantly from the measured values. Again, high 

R and R2 values approaching unity indicate a strong 

correlation between the observed and predicted 

values for the BPNN model. This makes BPNN to 

be a preferred model for pit wall deformation 

prediction. 
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Table 1 BPNN Model Performance Results for 

Training and Testing Datasets 

Performance 

Indicators 
Training Testing 

MAPE (%) 0.443524 0.207612 

MSE (mm) 0.439366 0.075088 

RMSE (mm) 0.662847 0.274021 

R 0.999813 0.999963 

R2 0.999627 0.999926 

 

4.2 RBFNN Model Performance 

In defining the RBFNN training model, more than 

one hyperparameter tuning was required to achieve 

optimal results. The RBFNN optimal solution 

leading to a smooth function was reached after 

several training trials with a spread parameter value 

of 0.8 and a maximum number of neurons set at 70. 

As shown in Table 2, there is a close to perfect 

relationship between the observed and predicted 

output datasets. This is further indicated by the 

higher R and R2 statistical measurements recorded 

(Table 2) for the training and testing datasets. 

Furthermore, the error figures recorded in the 

training and testing results are relatively small, as 

recorded by the MAPE, RMSE and MSE statistical 

indicators. Hence, values predicted by the RBFNN 

model are very close to the observed values.  

 

Table 2 RBFNN Model Performance Results for 

Training and Testing Datasets  

Performance 

Indicators 
Training Testing 

MAPE (%) 0.572501 0.149009 

MSE (mm) 0.078542 0.035698 

RMSE (mm) 0.280254 0.188939 

R 0.999967 0.999984 

R2 0.999933 0.999968 

 

4.3 GRNN Model Performance 
GRNN modelling can be successful when applying 

appropriate spread or smooth factors (Bachir et al., 

2012). The spread parameter optimum value was 

determined after a series of iterations, and in this 

study, 0.05 was the optimal number since it yielded 

minimal error values. The effectiveness of the 

GRNN model is presented in Table 3. GRNN model 

statistically yielded R and R2 values indicating a 

good relationship between the predicted and actual 

results. The model also generated RMSE, MAPE 

and MSE values that indicate acceptable prediction 

performance. 

 

 

Table 3 GRNN Model Performance Results for 

Training and Testing Datasets 

Performance 

Indicators 
Training Testing 

MAPE (%) 1.000341 3.14266 

MSE (mm) 0.902378 12.21809 

RMSE (mm) 0.949936 3.495438 

R 0.999617 0.993564 

R2 0.999234 0.98717 

 

4.4 Comparing BPNN, RBFNN and GRNN 

Results 

The ranking effectiveness of the models applied- 

BPNN, RBFNN and GRNN are compared using 

RMSE, MAPE, MSE, R and R2. Tables 4 and 5 

provide the best option for evaluating the model-

predicted 3D point deformation on the mine pit wall. 

Tables 4 and 5 show that the model with the lowest 

RMSE recorded indicates the best absolute fit to the 

data. It can be observed in Table 5 that the RBFNN 

model yielded the best RMSE test value of 

0.1889387 mm, followed by BPNN and GRNN with 

0.274021 mm and 3.4954381 mm. This can be 

confirmed in Fig. 5  

The MAPE indicator expresses the accuracy of the 

predictive models as a percentage of the error. 

Tables 4 and 5 indicate competitive MAPE test 

results of 0.207611928% and 0.149009029% for 

BPNN and RBFNN models, respectively (Fig. 6). In 

effect, RBFNN could interpret about 99.850991% of 

the data variations. In comparison, the BPNN model 

could interpret 99.792388% of the data variations. 

The worst-performing testing model in MAPE was 

the GRNN, recording a 3.1426595% of error 

deviation of the predicted output from the actual 

output. Thus, about 96.8573405% of the data 

variations could be interpreted by the GRNN model. 

The MSE is commonly used in machine learning to 

represent the error loss function and indicates how 

close the regression line is to the set of points. The 

lower the MSE value, the better the model. Tables 4 

and 5 show minimal MSE test values of 0.07508759 

mm and 0.035697844 mm for BPNN and RBFNN 

models, indicating better predictive models. 

Comparatively, from the testing results, the RBFNN 

model recorded about 50% superior strength over 

the BPNN in terms of the MSE evaluator, with 

GRNN performing poorly in that regard.  

The R is the degree of relationship between the 

observed values and the predicted values. It is 

observed that RBFNN, BPNN and GRNN recorded 

high and close R values above 0.9, representing a 

good relationship between the observed and 

predicted values (Fig. 7). However, the best 
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correlation was observed for the RBFNN model as 

it recorded test values of 0.9999839 and 0.9999678 

for both R and R2, respectively. This implies that the 

RBFNN predictions exhibit higher replication on the 

historical datasets. 

 

Table 4 Statistical Training Results for the various ANN models

Method Statistical Performance indicators (training) 

MAPE (%) MSE (mm) RMSE (mm) R R2 

BPNN 0.443524 0.439366 0.662847 0.999813 0.999627 

RBFNN 0.5725012 0.0785421 0.2802537 0.9999666 0.9999331 

GRNN 1.0003409 0.9023782 0.9499359 0.9996168 0.9992338 

 

Table 5 Statistical Testing Results for the various ANN models 

Method Statistical Performance indicators (testing) 

MAPE (%) MSE (mm) RMSE (mm) R R2 

BPNN 0.207612 0.075088 0.274021 0.999963 0.999926 

RBFNN 0.149009 0.0356978 0.1889387 0.9999839 0.9999678 

GRNN 3.1426595 12.218088 3.4954381 0.9935642 0.9871697 

 

 
Fig. 5 RMSE analysis 

 
Fig. 6 MAPE analysis 

Fig. 7 Coefficient of Correlation (R) analysis 

 

 

5. Conclusions and Recommendations  

The study assessed the accuracy performances of 

three supervised AI methods of BPNN, RBFNN and 

GRNN as viable tools for predicting 3D deformation 

on an active mine pit wall. The statistical evaluators 

indicate that all the models considered had good 

predictive strength. The overall statistical analyses, 

however, revealed that the RBFNN demonstrated 

good prediction power and outperformed the BPNN 

and GRNN by achieving the least MAPE, MSE, 

RMSE and the highest R and R2 values of 

0.149009%, 0.035698 mm, 0.188939 mm, 0.999984 

and 0.999968, respectively. Due to the increased 

risk and sensitive nature of mine pit walls which has 

become a safety concern, it is prudent to adopt the 

best predictive model and explore other hybrid 

techniques. In addition to using a point source 

(prism monitoring system) for surface displacement 

data collection, other sources, such as radar 

monitoring techniques, can be explored and 

combined to provide further understanding in 

deformation studies. 
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